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Modular Conformal Scaling Group Evidenced in 
Lepton-Quark Mass 

G e r a l d  R o s e n  1 

Received December 19, 1994 

Lepton-quark mass may reflect a correspondence in spacetime structure described 
by a modular conformal scaling group. Stemming in part from a spacetime line 
element correspondence ds ---> (exp h,) ds in which the eight quantities h0, ~.~, 
. . . .  h 7 constitute a closed set under a modular addition, the associated formula 
for lepton-quark mass (yielding values at the 1 GeV scale for the leptons and 
lighter quarks and at the physical pole for the top) is conjectured to be m = 
myQ2(exp -~-n), where mf = 10.245 TeV is the progenitor fermion mass, Q is 
the charge number of the lepton or quark, and the modular group parameter h, 
is indexed by a fermion principal quantum number n that depends on three 
mutually independent projection operators. 

1. I N T R O D U C T I O N  

If  it is not a low-energy approximation to a closed and complete quantum 
field theory, then the minimal three-generation standard mode l  (SM) must  
be essentially somewhat  phenomenological .  Rather than being generated by 
field interaction and thus intrinsic to the Lagrangian,  lepton-quark mass may 
be more primary and necessarily required to be put in by hand for SM. That 
lepton-quark mass may  indeed be patently primary to SM is suggested by 
its variation from m e for the electron to m t (>3 .1  • 105 me) for the top and 
its zero or nearzero value for the three neutrinos. As a consequence of  
this mass hierarchy, practical SM extensions encounter formidable technical 
difficulties which either encumber  or preclude zero or nearzero neutrino mass,  
as required by experiment and theory (Dolgov and Rothstein, 1993). This 
so-called neutrino mass problem "vanishes" quite literally if fundamental  
fermion mass is actually modulated by the square o f  the charge number, m 
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oc Q2. Interestingly enough, the proportionality of fermion mass to charge 
squared is a venerable notion, with perhaps the earliest antecedents in the 
classical me = e2/re electron self-energy constructs of Thomson and others 
(e.g., Born, 1957) more than 100 years ago. In contemporary SM the propor- 
tionality m ~ Q2 is not derivable from the Lagrangian, although suggested 
by the quadratic form of gauge-invariant free-field electroweak energy and 
supported by the empirical relations md/m~ ~ (1/3) 2, ms/m~ ~-- (1/3) 2, as well 
as by mve ~ m ~  ~ m ~  < <  m e. 

It has been observed that a simple mass formula of the form m = 
Q2(exp k) is wholly consistent with experimental measurements and quark 

model estimates for all 12 fundamental fermions (Rosen, 1995). Here ~ = 
433.3 MeV is an input (mean fermion mass) constant, Q is the charge number 
of the lepton or quark, and h is a real root of a quartic equation that brings 
in a principal quantum number n (= 0, 1, 2, 3). The physical basis for this 
mass formula and its relation to a discrete conformal correspondence in 
spacetime structure for lepton and quark states are analyzed in the present 
paper. 

2. LEPTON-QUARK MASS AND MODULAR CONFORMAL 
SCALING 

Consider the lepton-quark mass formula 

m = mfQ2(exp  - k , )  (1) 

as a conjectured result to be obtained from a preonlike or other structural 
model and to be employed as practical input in SM [i.e., mass values at the 
1 GeV scale for the leptons and lighter quarks and at the physical pole for 
the top as in, e.g., Albright and Nandi (1994)]. In equation (1) my is the 
progenitor fermion mass, Q2 (= l, 0 for leptons, 4/9, 1/9 for quarks) is the 
T hom son  fac tor ,  and kn is a modular group parameter that depends on a 
fermion principal quantum number n. The residue of a local conformal space- 
time transformation ds ~ (exp k,) ds which rescales the spacetime line 
element and thereby maps the progenitor fermion structural state into the 
lepton-quark structural states, the quantity (exp -kn)  in (1) is an element of 
a finite (order 8 as shown below) discrete modular group (e.g., Biggs, 1985); 
the modular addition on the quantities k0, k l . . . . .  ~k 7 is such that closure 
obtains: kn, �9 kn- = kn for all n', n", and n = f ( n ' ,  n") ---- f (n" ,  n ' )  contained 
in the set 0, 1 . . . . .  7. 

To formalize a suitable modular addition on the group parameter set k0, 
hI . . . . .  k7 it is necessary to express n in terms of three mutually commuting 
and simultaneously diagonalized projection operators P0, Pl, P2. With Pk = 
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(pk) 2 for k = 0, l, 2, the projection operator eigenvalues are 0 or 1, and 
n = 0, 1 . . . . .  7 according to the resolution identity 

2 
n-= ~ 2kp~--=p0+2pl + @ 2  (2) 

k=0 

Hence n is simply given by (P2 P~ P0)binary in the base-2 number system. The 
principal quantum number-projection operator association expressed by (2) 
is shown in Table I, and the modular addition on the h. then follows directly: 
when two Pk with the same k are added by O, the eigenvalue of their modular 
sum is defined as the sum of their eigenvalues modulo 2, 

(~ for p ~ = p ~  (3) 
P; @ P~ - P~ = for p f, 4: p~ 

Thus, with )t. prescribed as a fixed linear combination of the projection 
operators 

h .  = coPo + ClPl -t- c2p2 (4) 

in which the ck are constant (c-numbers), modular addition of the )% is closed 
by virtue of (3): 

X,,, 0 Xn" = (cop; + clP'l + c2P2) (~) (cop'~ + clp'[ + c2p'~) 

=- CoPo + clPl  + c2p2 = hn (5) 

Table II shows the { )tn } modular addition explicitly for generic ck; the associ- 
ated modular group {(exp -X.)} is isomorphic to (72 • C2 x (72, where C2 
is the two-group. 

Admissible I QI values for the fermions are given by the projection 
operator eigenvalues (P0, Pz, P2) via the formula 

f(P(1-p2) + 2p2)/3 

IQ! = l ~ 
(P(1-e2) + 2pp2)/3 

or equivalently by 

Pl/3 

[QI ,[or 
+ 

[(P0 + 2)/3 } 

IOl = 
(Po + 2pl)/3 

for P2 = 0 

for P2 = 1 

(6) 

(7) 
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Table II. Modular Addition for hn's Implied by (5) and (2) with cfls Generic" 

(~ h 0 h I h 2 h 3 h4 h 5 h 6 h7 

ho ho h~ h2 X3 h4 h5 X6 h7 
hi Xl ho h3 he h5 h4 h7 h6 
h 2 h2 h 3 ho hi h 6 h 7 h 4 h 5 
h3 h3 h2 hi ho h7 h6 h5 h4 
h4 h4 h5 h 6 h7 ho hl h 2 h 3 
h 5 h 5 h4 h 7 h6 hi h0 h 3 h2 
h6 h6 h 7 h 4 h5 h2 h 3 h0 h I 
h7 h7 h6 h5 h4 h3 h2 ht hO 

"Associated group is C2 • C2 • C2 with (72 the two-group 

The I Q I values prescribed by (6) or (7) are shown for their respective (Po, 
Pl, P2) in Table I. 

Reflecting the scaling strengths of the Pk in the physical conformal 
correspondence that relates fermion structural states, the three c~ in (4) should 
be simply related numbers in the base-2 system, like the coefficients 2 k in 
(2), if equation (1) is a fundamental scaling law. Indeed by empirical inspec- 
tion one finds that the Ck appear to satisfy the simple base-2 linear conditions 

Ck - -  C k - I  = 2 (k+l)/2 (k = 1, 2) (8) 

Co+Cl - c 2 =  1/2 

Conversely, the ck are fixed by (8) as 

1 5 5 
Co = ~ + 2x/~, ct = ~ + 2.,/-2, c2 = ~ + 4`/2 (9) 

and hence (4) is expressed explicitly as 

~. = (~ + 2.~)po + (~ + 2.,/~)p, + (~ + 4v/2)p2 (10) 

From (I0) and (2) one finds that 

5 
X 0 ~--- 0 X 4 = ~ + 4.f2 

1 
X , = ~ +  2.j2 h5 = 3 + 6 , ~  

5 t'7"_ 
~2 = ~ + 2,/2 ~k 6 = 5 q- 6 . ~  
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k3 = 3 + 4,,/~ h7 = I.__11 + 8,,/~ (11) 
2 

By substituting the latter kn values into formula (1) and prescribing m s = 
10.2452 TeV as input (in order to have m e = 0.51100 MeV), one obtains 
the mass values shown in Table I. 

All of the theoretical masses given by (I) and (11) and displayed in 
Table I are in satisfactory agreement with direct experiments and quark model 
estimates (Aguilar-Benitez et  al . ,  1992; Bai et  al . ,  1992; Dominguez and de 
Rafael, 1987; Gasser and Leutwyler, 1982; Donoghue and Holstein, 1992). 
In particular, the muon mass m r = 105.324 MeV is 0.316% below the 
experimental value, while the tau mass mr = 1781.96 MeV is between the 
BES experimental value (Bai et  al . ,  1992) of 1776.9 MeV and the previous 
8-year world mean of 1784.1 MeV. The theoretical top mass m t = 163.238 
GeV is in the lower part of the range delineated recently by the CDF (1994). 
In fact the masses given by (1) and (11) may be accurate to better than 
0.159% for all charged leptons 2 and quarks if all quark mass values except 
for the top (physical pole mass) are understood to pertain to a certain value 
slightly below the 1 GeV scale. The special (physical pole mass) scale for 
the top that appears in this (renormalization-independent) conformal scaling 
group model may be related to the hierarchal (n = 1) positioning of the top. 

3. SUMMARY 

Formula (1), which gives experimentally admissible zero mass for the 
three neutrinos and accurately consistent mass values for the charged leptons 
and quarks over the five-order-of-magnitude range characterized by the ratio 
mt[me -~ 3.2 • 105, supports the existence of a discrete conformal correspon- 
dence between fermion structural states, as well as the basic Thomson factor 
Q2 in lepton-quark mass. The modular group parameter •n is indexed by the 
fermion principal quantum number 3 and expressed by (4) in terms of the 
mutually independent projection operators (P0, P~, P2) and the ck. To complete 
this a u f b a u p r i n z i p  (Wigner, 1959) for generating lepton-quark mass from the 
Thomson-modulated primordial fermion mass, the ck are fixed by the simple 
base-2 linear conditions in (8), conditions which may relate to the details of 
the structural theory for leptons and quarks. Finally it is noteworthy that the 
primordial fermion f with mass m I = 10.245 TeV in (1) may be evidenced 

21f mr in (1) is set equal to 10.2614 TeV as prescribed input, then the theoretical masses for 
the electron and muon would both be within 0.159% of their respective experimental values. 

3All other lepton and quark quantum numbers are simply expressible in terms of Q and n; in 
particular, the baryon number B (= 0 for leptons, 1/3 for quarks, -1/3 for antiquarks) is 
independent of n and given by B = 9(1 - I QI)(IQI-�89 
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corroboratively if the primordial fermion pair annihilation f + f ~ y + y 
can be detected in cosmic radiation. 
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